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Abstract 
From the field investigation of liquefaction and ground deformation due to Hyogoken Nambu 
Earthquake, we have found that large deformation occurred in the liquefied ground. In order to 
simulate a liquefaction induced large deformation a liquefaction analysis method that can describe 
large deformation is necessary. The aim of the present paper is to propose a liquefaction analysis 
method by an elasto-plastic constitutive model based on finite deformation theory using both u-p 
(displacement - pore pressure) and u-w-p (displacement - relative displacement - pore pressure) 
formulation techniques. 



 F. Oka, T. Kodaka, R. Morimoto, N. Kita  
 

 
 

2 

1 Introduction 

From the field observation of liquefaction and ground deformation due to Hyogoken Nambu 
Earthquake, we have found that that very larger deformation occurred in the liquefied ground, in 
particular near structures such as quay wall [1][2]. Observed data show that liquefaction analysis 
method that can describe large deformation is necessary.  The aim of the present study is to propose a 
liquefaction analysis method based on finite deformation theory in order to well simulate a 
liquefaction induced deformation.  

In order to numerically predict liquefaction phenomena of water saturated soil, transient analysis 
of two-phase material is particular importance. Several methods have been proposed by researchers 
(e.g. Zienkiewicz et al. 1980 [3], Zienkiewicz and Bettes 1982 [4]). Most of them are based on Biot's 
theory of fluid saturated porous media [5]. In the full formulation of dynamics of fluid saturated soil, 
unknown variables are the displacements of solid phase u, the displacements of fluid phase U, and the 
pore water pressure p. For compressible fluid, p can be eliminated by the constitutive law of fluid. 
Hence the formulation is considered as u-U formulation (Prevost 1982 [6], Zienkiewics and Shiomi 
1984 [7]). In this formulation, U can be replaced by relative displacement between fluid and solid 
displacements w. This formulation is called u-w (w=n(U-u)) formulation (Ghaboussi and Wilson 1972 
[8]).  If the relative acceleration is small enough compared with the solid acceleration, w can be 
neglected and u-p formulation is sufficient for the analysis. Many numerical codes have been 
developed based on the u-p formulation (Zienkiewicz et al. 1980 [3], Zienkiewicz and Bettes 1982 [4], 
Simon et al. 1984 [9], Aubry and Moderessi 1989 [10], Oka et al. 1994 [11]). The other formulation is 
called u-w-p formulation. This formulation is classified as full formulation for compressible and 
incompressible pore fluid. The question is what formulation is preferable for the specific practical 
problems. An attempt for the answer to this question is given by Zienkiewicz et al. (1980) [3].  
Zienkiewicz et al. (1980) reported that although it is necessary to adopt u-w-p formulation for the 
problem with higher frequency wave and higher permeability coefficient, u-p formulation is sufficient 
for the problems in some rage of frequency and permeability coefficient based on the one-dimensional 
analytical study of water saturated elastic material. Few studies are carried out for the performance of 
u-w-p formulation using an elastio-plastic model for soil skeleton. Lin and Borja (2000) [12] and Lin 
(2000) [13] have done  simulation of liquefaction of elasto-plastic soil using u-w-p formulation. In the 
present paper we have carried out a numerical simulation of elasto-plastic soil using u-w-p formulation 
to study validity and limit of u-p formulation.  

2 Finite Element Formulation 

In the numerical analysis, a cyclic plasticity model for sand (Oka et al., 1999 [14]) and Biot's type two 
phase mixture theory are used. For the discretizaion of Biot' type governing equations for two-phase 
mixture in space, finite element method are adopted with the  virtual work theorem. 

For the dynamic analysis, there are several methods such as u-p (displacement - pore water 
pressure) formulation and u-w-p (displacement - relative acceleration - pore water pressure) 
formulation etc. (Zienkiewicz et al. 1980 [3]).  In the u-p formulation method, acceleration of soil 
skeleton and pore water pressure are taken as independent variables, on the other hand, in the u-w-p 
formulation, acceleration of soil skeleton, relative acceleration (difference between accelerations of 
soil skeleton and pore fluid) and pore pressure are independent variables.  

For the finite element formulation, we employed updated-Lagrangian method with Jaumann 
stress rate tensor. 
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We consider the equation of motion for water  saturated soil and the continuity equation for pore 
fluid at time  tt ∆+ . The effective stress concept is used in the analysis as: 
 

ijijij pTT δ+′=  
 
where ijT ′  is the effective stress tensor, ijT  is the Cauchy's stress tensor and p is the pore water 
pressure. 
 
Equation of Motion 

Equation of motion of fluid saturated soil is given by 
 

ijji
R
i

FS
i bSaa ρρρ +=+ ,  

 
where ρ  is the mass density of saturated soil, Fρ is the mass density of pore fluid, S

ia  is the 
acceleration vector component of fluid saturated soil, R

ia  is a relative acceleration,  ijS  is the nominal 
stress and ib is the body force.  
 
Continuity Equation 

Continuity equation is derived by the mass conservation law and the equation of pore fluid as: 
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where dot •  denotes time differentiation, n is the porosity, S

ijD  and F
ijD  are the stretching tensors for 

solid and fluid phases, respectively.  
 
Constitutive Model  

A cyclic elasto-plastic model for sand based on non-linear kinematic hardening rule (Oka et al. 
1999 [14]) is used in the analysis. The features of the model are given in the following section. 
 

Koizumi (2000) [15] and Oka et al. (2001) [16] developed a liquefaction analysis code based on 
finite deformation with u-p formulation, LIQCA-FD. They applied the proposed model to the 
behaviors of quay wall and the foundation beneath embankment it was found that the liquefaction 
analysis method based on the finite deformation theory is well applicable to predict the liquefaction 
induced deformation. In the present study we have newly developed a new FEM code based on u-w-p 
formulation which is referred to as LIQCA-FW. 

 
In order to discretize equations of motion for water saturated soil and the continuity equation  for 

pore fluid in time, Newmark's β method and finite time difference method are used. In the formulation, 
acceleration vector  }{ Na , relative acceleration vector }{ R

Na  and pore water pressure }{ Np  are taken 
as independent variables.  

After manipulation, discretized governing equations are given in matrix form as: 
 
 

[ ] }{}{ BxA =  

(1) 

(2) 

(3) 

(4) 
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where [ ]M  is the mass matrix, [ ]K  is the stiffness matrix, }{ Na  is the acceleration vector at node, 

ttNv ∆+}{  is the velocity vector, }{ Np  is the pore water pressure vector,  t∆  is the increment of time, 
fρ  is the mass density of pore fluid, superscripts S and R represent solid and relative components, 

respectively. wγ  is the unit weight of pore water  and k  is the permeability coefficient.  

3 Constitutive Model for Sand 

In the analysis, we have extended an elasto-plastic model for sand which was derived based on the 
non-linear kinematic hardening theory Adachi and Oka (1982) [17], Oka et al. (1999) [14] to the 
model applicable for the finite deformation theory. In the finite deformation analysis, objective stress 
rate is necessary. As for the stress rate tensor, we used a Jaumann's stress rate tensor  ijT ′ˆ  of effective 
Cauchy stress tensor. 
 

kl
EP
ijklij DCT =′ˆ  

 
where EP

ijklC  is the elasto-plastic compliance tensor and klD  is the stretching tensor. 
Total stretching tensor can be decomposed into elastic )( E

ijD and plastic stretching tensor )( P
ijD  

as 
 

P
ij

E
ijij DDD +=  

 
The model used in the analysis has three main features. The first feature of the model is that the 

generalized flow rule is developed to accurately describe the dilatancy characteristics of sand, and the 

(5) 

(6) 
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second one is that cumulative plastic strain dependence of the plastic shear modulus is introduced in 
order to well simulate a cyclic mobility. The third one is the introduction of a fading memory of the 
initial anisotropy. The constitutive model employs an overconsolidation boundary surface which 
distinguishes the overconsolidated (O.C.) region from the normally consolidated (N.C.) region. The 
non-linear kinematic hardening variable is used in the yield function as well as in the plastic potential 
function.  

 
Overconsolidation Boundary Surface 

Overconsolidation boundary surface is introduced to define the N.C. and O.C. regions. The 
overconsolidation boundary surface, 0=bf , is defined as follows:  
 

0ln**
)0( =

′
′

+=
mb

m
mb T

TMf η   

{ } 2/1*
)0(

**
)0(

**
)0( ))(( ijijijij ηηηηη −−=  

m
D

ijij TT ′= /*η  
 
where mT ′  is the mean effective stress, D

ijT  is the deviatoric stress tensor, *
mM  is the value of the 

stress ratio expressed by 2/1}{ **
ijijηη  when the maximum volumetric strain during shearing takes place 

and which could be called the phase transformation stress ratio, and *
)0(ijη  denotes the value of *

ijη  at 
the end of consolidation.  The condition 0<bf  means that the stress state stays in an overconsolidated 
region (O.C. region), while 0≥bf  means that the stress state stays in a normally consolidated region 
(N.C. region).  Herein, mbT ′  in Eq.(7) is given as follows: 
 









−
+′=′ P

mbimb veTT
κλ

1exp  

 
where mbiT ′  is the initial value of mbT ′ , κ  is the swelling index and λ  is the compression index, e is 
the void ratio, Pv  is the plastic volumetric strain. 
 
The Generalized Flow Rule 

A stress-dilatancy characteristic derived by conventional flow rule sometimes gives a rather 
steeper slope to the liquefaction strength curve than that obtained from laboratory tests. In order to 
counteract this shortcoming in the original model, the flow rule is generalized using the fourth rank 
isotropic tensor, ijklH  as 
 

kl
ijkl

P
ij T

gHD
′∂

∂
=  

)( jkiljlikklijijkl baH δδδδδδ ++=  
 
 
Plastic Strain Dependence of the Plastic Shear Modulus 

One of the problems with the constitutive model for sand is how well the behavior could be 
reproduced under cyclic mobility. To reproduce the continuous increase in shear strain under cyclic 
mobility for loose sand, the strain dependence of the plastic shear modulus should be taken into 
account. 
 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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4 Numerical Analysis 

In the present study, we have numerically analyzed a dynamic behavior of homogeneous sandy ground 
model.  Fig.1 shows a model ground for numerical analysis. The finite deformation based effective 
stress analysis mentioned above was performed using two methods based on both u-p formulation and 
u-w-p formulation. As for the finite elements, 20 noded isoparametric element for displacements of 
soil skeleton and relative displacements, and 8 noded isoparametric element for pore water pressure 
are used. 2% Rayleigh damping and β = 0.3025, γ = 0.6 are used in the analysis. The bottom and 
lateral surfaces are assumed to be impermeable boundaries. Hence, relative displacements ( iw ) 
between two phases, xw  and yw  are zero: 0=xw  ( 0=x , 3 m), 0=yw  ( 0=y , 3 m). At the bottom, 
all of the displacements are fixed: 0=iu , 0=iw , i = x, y, z. 

The 20 second of horizontal sine wave with maximum acceleration of 250 gal was used as input 
motion in the numerical analysis.  

In Table 1, material parameters used in the calculation are listed. The parameters are determined 
for the medium dense Toyoura sands (Oka et al. 1999 [14]). Table 2 shows frequency and permeability 
coefficient used for the numerical analysis. In Fig.1, the nodal points are denoted where output of  
calculated results is taken. Fig.2 shows the maximum values of acceleration for solid phase and 
relative acceleration in depth during the calculation of 20 seconds. The relative acceleration is larger 
for high frequency and high permeability coefficient. Figs.3 and 4 are acceleration of solid phase - 
time profile at the nodal point A and pore water pressure - time profile at the nodal point A, 
respectively. In case f-2, in which the frequency of input motion and the coefficient of permeability are 
high, the difference between u-p formulation (LIQCA-FD) and u-w-p formulation (LIQCA-FW) is 
large. This means that u-w-p formulation is necessary to well simulate the behavior of gravel layer 
with high permeability.   
 
 
 
 
 

Table 1: Material parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

γw 9.8 (kN/m3) *
mM  0.707 

γsat 18.98 (kN/m3) *
fM  0.990 

K0 0.5 *
0B  3500 

e0 0.772 *
1B  350 

λ 0.02 *
fC  2000 

κ 0.0052 n 1.5 
ν 0.25 P

DArγ  0.004 
g 9.8 (m/s2) E

DArγ  0.001 
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Table 2: Frequency and coefficient of permeability used in the analysis. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Model ground used in the analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Maximum amplitudes of relative acceleration response 
 
 
 

Cases Frequency of input sine wave Coefficient of  permeability 
case s-4 0.5 (Hz) 4100.1 −×  (m/s) 
case s-3 0.5 (Hz) 4100.1 −×  (m/s) 
case s-2 0.5 (Hz) 4100.1 −×  (m/s) 
case m-4 5.0 (Hz) 3100.1 −×  (m/s) 
case m-3 5.0 (Hz) 3100.1 −×  (m/s) 
case m-2 5.0 (Hz) 3100.1 −×  (m/s) 
case f-4 10.0 (Hz) 2100.1 −×  (m/s) 
case f-3 10.0 (Hz) 2100.1 −×  (m/s) 
case f-2 10.0 (Hz) 2100.1 −×  (m/s) 
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Figure 3: Acceleration of solid phase - time profile at the nodal point A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Pore water pressure - time profile at the nodal point A 
 
 

 

5 Conclusions 

In the present study, a liquefaction analysis method based on the finite deformation theory using 
u-w-p formulation is studied. The proposed theory was derived based on the updated Lagrangian 
method and the Jaumann stress rate tensor. The proposed method is compared with the results by u-p 
formulation. We have found that the difference between results by two methods is large in the case of 
high permeability coefficient and high frequency of input motion. 

 

 



 WCCM V, July 7-12, 2002, Vienna, Austria  
 

 
 

9 

References 

[1] T. Shibata, F. Oka, Y. Ozawa, Characteristics of ground deformation due to liquefaction, Soils 
and Foundations, Special issue on the 1995 Jan. 17 Hyogoken-Nambu Earthquake Disaster, 
(1996), 65-79.  

[2] Y. Taguchi, A. Tateishi, F. Oka, A. Yashima, Three-dimensional liquefaction  analysis method 
and array record simulation in Great Hanshin earthquake, Proc. 11th World Conference on 
Earthquake Engineering, Acapulco, Sociedad Mexicana de Ingenieria Sismica, A.C. ed., Balkema 
(CD-ROM), (1997), Paper No.1042. 

[3] O.C. Zienkiewcz, C. Chang, P. Bettes, Drained undrained consolidating and dynamic behavior 
assumptions in soils, Geotechnique, 30(4), (1980), 385-395. 

[4] O.C. Zienkiewcz, P. Bettes, Soils and other saturated media under transient, dyanmic conditions. 
General formulation and the validity of various simplifying assumptions, Soil Mechanics – 
Transient and Cyclic Loads, John Wiley & Sons, (1982), 1-16. 

[5] M.A. Biot, Theory of propagation of elasti waves in a fluid-saturated porous solid, Part I - Low 
frequency range,  J. Acoustic Society of America,  28(2), (1956), 168-178. 

[6] J. Prevost, Nonlinear transient phenomena in saturated porous media, Computer Methods in 
Applied Mechanics and Engineering, 20, (1982), 3-18. 

[7] O.C. Zienkiewicz, T. Shiomi, Dynamical behavior of saturated porous media: the generalized 
Biot formulation and its numerical solution, Int. J. Numer. Anal. Methods Geomechanics, 8, 
(1984), 71-96. 

[8] J. Ghaboussi, E.Wilson, Variational formulation of dynamics of fluid-saturated porous elastic 
solids, J. Engineering Mechanics, Proc. ASCE, 98, EM4, (1972), 947-963. 

[9] B. Simon, O.C. Zienkiewicz, D. Paul, An analytical solution for the transient response of 
saturated porous elastic solids, Int. J. Numerical Anal. Methods Geomechanics, 8, (1984), 381-
398. 

[10] D. Aubry, H. Moderessi, A model for the non-linear dynamic analysis of saturated soils, Revue, 
Francaise Geotechnique 46, (1989), 43-75. 

[11] F. Oka, A. Yashima, T. Shibata, M. Kato, R. Uzuoka, FEM-FDM coupled  liquefaction analysis 
of a porous soil using an elasto-plastic model, Applied Scientific Research, 52, (1994), 209-245. 

[12] C.-H. Lin and R.I. Borja, Dynamic theory of mixtures and its finite element implementation for 
nonlinear analysis of ground motion induced by seismic shaking by Technical Report No. 137, 
The John A. Blume Earthquake Engineering Center, Stanford University, 2000. 

[13] C.-H. Lin, Dynamic theory of mixtures and its finite element implementatin for nonlinear analysis 
of ground motion induced by seismic shaking, A dissertation submitted to the department of Civil 
and Environmental Engineering and the Committee on graduate studies of Stanford University in 
partial fulfillment of the requirements for the degree of doctor of philosophy, August 2000. 

[14] F. Oka, A. Yashima, A. Tateishi, Y. Taguchi, S. Yamashita, A cyclic elasto-plastic constitutive 
model for sand considering a plastic-strain dependence of the shear modulus, Geotechnique, 
49(5), (1999), 661-680. 

[15] T. Koizumi, Liquefaction analysis of coastal structures based on finite defor mation theory, MS 
Thesis, Department of Civil Engng., Kyoto University, (2000), (in Japanese). 



 F. Oka, T. Kodaka, R. Morimoto, N. Kita  
 

 
 

10 

[16] F. Oka, T. Kodaka, T. Koizumi, S. Sunami, An effective stress based liquefaction analysis based 
on finite deformation theory, Computer Methods and Advances in geomechanics, Desai et al. 
(eds), Balkema, (2001), 1113-1116. 

[17] T. Adachi, F. Oka, Constitutive equations for sands and overconsolidated clays, and assigned 
works for sand, Results of the Int. Workshop on Constitutive Relations for Soil, Grenoble, (1982), 
141-157. 

 


