行き止まり高透水性基盤を有する河川堤防の浸透破壊

堤防	模型実験	浸透破壊	

名城大学	国際会員	小高	猛司・崔	瑛
名城大学大学院	学生会員	〇林	愛実・森	三史郎
建設技術研究所	国際会員	李	圭太	

1. はじめに

近年,矢部川堤防の破堤¹⁾,子吉川堤防の法すべり²⁾等,高透水性基礎地盤に起因すると思われる被災事例が目立っ ている。これらは計画高水位以下の洪水での被災に直結する問題であるため治水上の注目度は高いが,局所的な地盤構 造が原因であるために同種の被災の芽を未然に摘み取ることは容易ではない。先述の被災事例においても,堤体と基礎 地盤の両者を含めた地盤構造に被災要因を求めることができるが,堤体変状のメカニズムを含めてその解明は十分に進 んでいるとは言いがたい。本報では,高い透水性を有する基礎地盤の存在に着目し,透水性が大きく異なる 2 層の基礎 地盤を有する堤防の浸透模型実験を行い,基盤漏水が堤体決壊に結びつくメカニズムについて検討をした。

2. 模型実験の概要

図1に浸透模型実験装置の概要を示す。実験装置の外寸は、幅 1500mm、高さ 500mm、奥行き 160mm であり、通水 孔を有する仕切板によって土槽(内寸:1300mm×480mm×120mm)と給水水槽(内寸:120mm×480mm×120mm)に分け られている。本実験では、高い透水性基礎地盤に起因して、法尻付近の基礎地盤に発生すると予想される比較的大きな 動水勾配の影響を検討するため、図1 に示すように模型地盤を領域I、II、IIIに分け、それぞれの領域における地盤材 料を変化させた計 3 ケース、また、領域I である透水性の高い基礎地盤の長さを変更したケースについて検討した。透 水性の高い地盤材料には三河珪砂 3 号、透水性の低い地盤材料には 6、7、8 号を 5:2:5 の重量比で混合したもの、さら に透水性の低い粘性土には 6、7、8 号とカオリンを 5:2:5:5 の重量比で混合したものを使用した。Case_1 は領域 I を透水 性の高い三河珪砂 3 号を用い、領域II、IIIには三河珪砂 6 号を用いたケース、Case_2 は Case_1 から堤体地盤を透水性 の低い 6、7、8 混合砂に置き換えたケース、Case_3 は Case_2 からさらに堤体地盤を透水性の低い粘性土に置き換えた ケースである。それぞれの地盤材料の粒度分布を図 1 に示す。地盤材料はいずれも 4%(粘性土のみ 10%)に含水比調 整した後、間隙比 1.0(三河珪砂 3 号は 0.9、粘性土は 0.7)になるように、一層 20mm ずつ締め固めて模型地盤を作製 した。この際、より均一な模型地盤を作製するため、各層をさらに横方向に 200mm ずつ区切り、それぞれのブロック に所定の土試料を投入した。模型実験作製後、給水水槽部の水位を 420mm で一定に保持して、実験装置の正面および 上部からビデオ撮影を行いながら堤防の浸透破壊の様子を観察した。なお、本実験では堤体地盤に変化が見られなくな ったとき、もしくは越流が発生し破堤したと判断した時点で実験終了とした。

3. 浸透破壊過程

写真 1 に各ケースおける浸透破壊の様子を示す。堤防を囲む点線は堤防の原型を示し、天端付近の実線は給水水槽の 高水位の位置を示す。Case_1 では、実験開始 2 分 23 秒後には法尻から少し離れた位置でボイリングが確認され、その 範囲は法尻付近の領域IIの広い領域に徐々に広まっていく。それに伴い、法尻部分では基礎地盤を巻き込むような明瞭 な円弧すべりが発生する。これは法尻付近での間隙水圧の急激な上昇による有効応力の低下によって法尻下部地盤の支 持力が急激に喪失したためであると考えられる。この現象は広義の液状化とも解釈することができるため、本報では以 後、単に液状化と呼ぶ。その後、比較的大きな円弧すべりが断続的に天端に向かって伝播する進行性破壊が確認できる。 さらに、4 分 11 秒後からは法面の表層のみですべり崩壊が次々に発生していき、天端ぎりぎりまで変形が続く。以上か ら、透水性の高い基礎地盤が存在する場合、局所的に動水勾配が上昇し、基礎地盤のボイリングの発生に伴い法面全体

Seepage failure of river embankment on dead end high-permeable foundation ground: T. Kodaka, Y. Cui, M. Hayashi and S. Mori (Meijo University) and K.-T. Lee (CTI Engineering),

写真1 浸透破壊過程

のすべり崩壊に発展する恐れがあると言える。Case_2_1 では、領域Ⅰ、Ⅱの部分で Case_1 とほぼ同じ浸透過程が見ら れるが、堤体材料の透水性が低いため、基礎地盤から水が浸出した際、堤体の大部分はまだ浸透が進んでいない。実験 開始2分11秒後には法尻付近でパイピングが発生し、同時に法尻付近の領域Ⅱが液状化したため法尻で小さな円弧すべ りが発生した。3分16秒後には堤体にき裂が生じブロック状に土塊が破壊しつつ基礎地盤に沈み込み、それに伴いブロ ック下側に沿って流れる水みちが確認された。その後天端を含む大きなすべりが発生し、ブロックの下部に領域Ⅱから 法尻を結ぶような長い水みちが確認され、その水みちにより囲まれた崩壊土塊は一気に基礎地盤領域Ⅱに沈み込む。こ れにより天端が大きく沈下し堤防は越流により崩壊した。すなわち、液状化して支持力を損失した基礎地盤にブロック 状の土塊が沈み込むことによって次々に泥濘化し、それがさらに堤体内部まで基礎地盤の液状化を伝播させ決壊に至る ような堤体変状に進展する。Case 2 2 および Case 2 3 は、Case 2 1 の領域 I の長さを変えたケースだが、これらは行 き止まりの位置によって、すべり破壊が開始する時間や基礎地盤の巻き込み度合い等にある程度の差異があるものの、 ほぼ同じ崩壊パターンを示している。すなわち,堤体の透水係数が基礎地盤より低い場合,基礎地盤が液状化した際, 堤体は不飽和の状態であるため、Case 1 のような浸潤による泥濘化は発生しない。浸透の進行とともに基礎地盤の液状 化領域が徐々に広まり、上部堤体を支えきれなくなると、堤体にき裂を伴うブロック状の崩壊が発生する。Case 3 では、 領域Ⅰ, Ⅱは Case 1 とほぼ同じ浸透過程が見られるが、堤体にはほとんど水が浸透していかない。2 分 15 秒後には法 尻で噴砂および噴水が確認できた。この際,法尻の下部地盤(領域Ⅱ)では明確な水みちが見られる。これは,基礎地盤 領域 I に高琇水性地盤を設けることによって、法尻部分に高い水頭が作用し、局所的に動水勾配が大きくなるため法尻 下部で鉛直上方向のパイピングが発生したためであると考えられる。また、堤体と領域Ⅱの境界に生じる水みちが徐々 に長くなり、約20分後頃水平方向で水みちが一気に繋がり、水平方向におけるパイピング現象が見られた。これは水み ちの進行に伴って実質の浸透距離が徐々に短くなるために、水平方向の動水勾配が急激に上昇したためであると考えら れる。このケースでも堤体が基礎地盤に沈下する現象が見られるが、粘性堤体であるため泥濘化を伴う堤体破壊は発生 せず、飽和化に伴って基礎地盤に沈み込む場合であっても堤体全体の陥没までは至っていない。

4. まとめ

行き止まりのある高透水性基礎地盤が存在する場合の共通事項として,法先に高い動水勾配が作用することによる噴砂の発生が確認された。その後堤体および基礎地盤の破壊形態は,地盤構成により異なることが示された。また,行き止まりの位置を変更した場合,法尻に行き止まりが近いほどパイピング発生が早くなっていることが確認できた。なお,本研究は,国交省河川砂防技術研究開発助成「パイピングに伴う堤防劣化を考慮した河川堤防評価技術の開発」の一環で実施している。記して謝意を表する。

参考文献:1) 矢部川堤防調査委員会報告書, 2013.2) 第2回地盤工学から見た堤防技術シンポジウム災害報告特別セッション 2014.