野田利弘

粘土地盤上の不飽和盛土で地震後に生じる水位上昇・下降現象の空気~水~土連成解析

連成解析 閉封飽和域 不飽和土

名古屋大学 学生会員 〇吉川高広 名城大学 国際会員 小高猛司

1. はじめに

695

東日本大震災では、河川堤防が各所で崩壊し、砂質堤体下部に粘 土基礎地盤の圧密沈下により形成されていた飽和域(閉封飽和域) が地震時に液状化したことが特に注目されている¹⁾.本被災メカニ ズムの数値解析的実現を目的に、簡単な条件下で、不飽和状態から 飽和状態までを扱える「空気~水~土骨格連成静的/動的有限変形 解析コード²⁾」による施工時・地震中・地震後のシミュレーション を実施した.この結果、施工時は盛土下部での閉封飽和域の形成を 確認するとともに、地震後には時間をかけて不飽和盛土内の水位が 上昇し下降する興味深い結果を得たため、その概要を述べる.ただ し、本稿では紙幅の都合上、施工時の閉封飽和域の形成過程は省略 し、地震中・地震後の解析結果を中心に示す.

2. 解析条件

図1は解析条件で、特に水理境界条件と空気の境界条件を中心に 示した.地表面と盛土表面のみ水理条件を水頭が15.5m,空気条件 を常に大気圧を満たす排気条件とし、他は非排水・非排気条件とし た.水頭の基準は解析断面の下端に設定した.用いた解析コード²⁾ は土骨格の構成式にSYS Cam-clay Model³⁾を搭載しており、表1は その材料定数と初期値、また土粒子密度を示す.初期の地盤は、地 下水位が地表面下 0.5m(下端からの高さが15.5m)に存在し、表1 に示す材料1(基盤)と材料2(粘土)で作った.その地盤に同表 の材料3の盛土を構築した.紙幅の都合上、水分特性と透水係数、 透気係数に関するパラメータの掲載を省略するが、盛土(材料3) の水分特性曲線と飽和度に対する透水係数・透気係数の関係を図2 に示した.盛土は、初期飽和度を75%(初期の間隙空気圧は 0kPa)に設定して、1日1mの早さで高さ5mまで5回に分けて構 築⁴⁾した後に、50年間圧密させた.次に、図3に示した地震波 (2011年3月11日のKiK-NET小野田における観測波(EW成

分)を翠川の式 ⁵⁾を用いて工学的基盤面での V_s 値に補正した波) を地盤底部の水平方向に入力した. その後地震波の入力を停止し, その他の条件は変えずに圧密計算を実施した. 盛土施工中は, 地盤 側方は水平方向を固定, 地盤底部は水平・鉛直ともに固定条件とし た. 地震入力時は, 地盤底部の水平方向を粘性境界 ⁶⁾⁷⁾⁸⁾(密度 ρ =2.0g/cm³, せん断波速度 V_s =300m/s), 鉛直方向を固定条件にして, 側方には周期境界を与えた.

3. 解析結果

図4は地震終了直後,地震後10時間経過時,地震後90日経過時 の平均有効応力,過剰間隙水圧,間隙空気圧および飽和度の分布図 を示す.まず地震終了直後に注目すると,盛土の平均有効応力はほ ぼゼロであり,過剰間隙水圧と間隙空気圧は盛土底部の閉封飽和域 付近で大きく上昇している.この主な原因は,飽和度が高い状態, つまり地震などのごく短時間では等体積が保たれるが,この状態で

Static/dynamic soil-water-air coupled analysis on earthquake-induced increase and decrease of water level in unsaturated embankment on clay ground

名古屋大学 国際会員

図1 水と空気の境界条件

600m

表1 材料定数および初期値

Yoshikawa Takahiro, Noda Toshihiro (Nagoya University) Kodaka Takeshi (Meijo University) Takaine Toshihiro (Asanuma Corporation)

図4コンター図

(SYS Cam-clay Model が表現する骨格構造概念の一つの)「構造」が喪失したためである.次に,地震後 10 時間経過時に注目する.平均有効応力が回復し,過剰水圧の消散と空気圧の低下を確認できる.本解析条件では,盛土の透気係数は透水係数よりも大きい(図2参照)ため,盛土表面から空気が排出し,平均有効応力の回復,空気圧の低下,さらには水圧の低下も生じた.一方で粘土地盤に関しては,過剰間隙水圧の分布図に注目すると,地震中の塑性圧縮により上昇した水圧は,地震後 10 時間経過時にも変化が見られない.最後に,地震後 90 日経過時に注目すると,盛土内の飽和度・水位が上昇している点は興味深い.これは粘土地盤の塑性圧縮による水圧の上昇と地震後 10 時間経過時に生じた排気に伴う盛土内の水圧の低下により,地盤と盛土の間に生じた高い動水勾配をもって地盤から盛土へ水が流入したことによる.この結果,粘土地盤の過剰水圧が消散し,平均有効応力が回復している.この後,図は省略するが,水位は約1年で地震前の位置に戻った.

4. おわりに

静的/動的空気~水~土骨格連成有限変形解析コードを用いて、比較的簡単な条件を設定して粘土地盤上の不飽和盛 土の施工時・地震中・地震後の挙動を調べた.その結果、次のような知見を得た.

(1) 施工時は、盛土載荷に伴う粘土地盤の圧密沈下により、盛土下部に閉封飽和域が形成される(図は省略).

(2) 地震中は、盛土下部の閉封飽和域では平均有効応力が著しく低下し、過剰間隙水圧と間隙空気圧が高い.

(3) 地震後は、盛土表面からの排気が盛土内の空気圧のみならず水圧も減少させ、平均有効応力を回復させる.

(4) (3)に加えて、地震時に生じる粘土地盤の塑性圧縮に伴う過剰水圧の上昇により、地盤から盛土へ水が流入する. これら一連の挙動は飽和土には見られない「不飽和土ならでは」の挙動と言える.ただし、地震後の盛土内の水位上昇

および下降に要する時間や上昇高は材料定数や初期・境界条件によって変わるため、本解析結果の値は一例に過ぎない. 盛土内の飽和度・水位の上昇は降雨によって生じるが、本解析コードが導き出した結果は地震に起因する. 今後、実

事例の調査や実験による検証を行うとともに、今回の解析結果を足掛かりにして、実際の堤体の断面や材料を用いた耐 震性評価を行なっていく予定である.

謝辞: JSPS 科研費 20126012, 25249064 と国土交通省 H25 年度河川砂防技術研究開発の助成を受けた. 謝意を表します.

また、本稿は地盤工学会東日本大震災対応調査研究委員会「地盤変状メカニズム研究委員会(委員長:浅岡顕)」に 関連する研究報告である.

参考文献: 1) 地盤工学会 (2012): 地震時における地盤災害の課題と対策, 2011 年東日本大震災の教訓と提言(第二次). 2) Noda and Yoshikawa (2014): Soil-water-air coupled finite deformation analysis based on rate-type …, S&F, to be submitted. 3) Asaoka et al. (2002): An elasto-plastic description …, S&F, 42(5), 47-57. 4) Takaine et al. (2010): Predictive simulation of deformation and failure …, S&F, 50(2), 245-260. 5) 翠川三郎 (1987): 関東平野 を対象とした震度分布予測,構造工学論文集, 33B, 43-48. 6) Joyner and Chen (1975): Calculation of nonlinear ground response in earthquakes, Bulletin of the Seismological Society of America, 65(5), 1315-1336. 7) Lysmer and Kuhlemeyer (1696): Finite dynamic model for infinite media, ASCE, EM4, 859-877. 8) Noda et al. (2009): Co-seismic and post-seismic behavior …, S&F, 49(5), 739-756.