不撹乱自然堆積粘土の繰返し単純せん断後の変形について

	単純せん断試験,	変形挙動,	鋭敏粘土
--	----------	-------	------

名城大学 国際会員 小高猛司・崔 瑛 名城大学大学院 学生会員 〇吉田賢史 中日本^イウェイ・エンジニアリング名古屋 正会員 三好直輔 (元名城大院)

1. はじめに

平成23年3月11日に発生した東北地方太平洋沖地震では、平野部の粘土地盤上の道路盛土や河川堤防の盛土構造に 変状被害が多数報告されている。粘土地盤では地震時に累積した過剰間隙水圧が、地震後に消散するのに伴って時間を かけて圧密沈下すると考えられる。そのため、粘土地盤においては、地震時の即時変形のみならず、地震後変形も検討 する必要がある。さらに、粘土地盤の骨格構造が高位な場合には、地震時ならびに地震後の構造劣化の影響も把握して おかなければならない。そこで本報では、地震時ならびに地震後の沈下挙動を室内試験で再現することを試みた。具体 的には、鋭敏な不撹乱東大阪粘土を用いて、単純せん断試験装置により、非排水条件での繰返しせん断をした後、その 際発生した過剰間隙水圧が消散するまで圧密を実施し、排水量ならびに軸圧縮量を計測した。

2. 試験概要

本報で用いた試験試料は、不撹乱の自然堆積粘土(以下、不 撹乱赤井粘土)である。不撹乱赤井粘土は、大阪府大東市赤井 で採取した Ma13 沖積粘土であり、大阪平野における内湾部の 汽水環境で堆積しており鋭敏性が高い¹⁾。不撹乱赤井粘土の物 理特性は、液性限界が 70~80%、塑性限界が約 35%、塑性指数 が 40~50 である。図1 に赤井粘土の三軸試験結果²⁾を示す。不 撹乱粘土では、

塑性圧縮を伴うひずみ軟化挙動が顕著に現れて おり、構造が卓越した鋭敏な粘土であることがわかる。本報で は写真1に示す単純せん断試験装置を用いる。供試体寸法は, 直径 60mm, 高さ 30mm の円柱形である。単純せん断試験装置 では、上下ペデスタルに刃付きのポーラスストーンを設置して おり、供試体との摩擦を十分に確保したうえで、上部ペデスタ ルを水平移動させることにより単純せん断試験を行う。また, 写真1に示すようにメンブレンを被せた供試体の外側に、供試 体径と同じ内径の穴を持つ厚さ 1mm のドーナツ形状の多層ス リップリングを 30 枚積層させて設置し,供試体側面形状を拘束 しながらせん断することで、単純せん断モードを維持している。 供試体をセルに設置後、二重負圧法によって飽和化を行い、背 圧を 200kPa 作用させ、20 時間圧密後、非排水条件で繰返しせ ん断試験を実施した。繰返しせん断は、片せん断ひずみ振幅を 5%に設定して 42 回繰り返した。繰返しせん断後,その際に発 生した過剰間隙水圧が消散するまで圧密を実施し、排水量なら

写真1 単純せん断試験機のセル内の様子

びに軸圧縮量を計測した。同じ供試体でこの操作を数回繰り返すことにより、複数回の地震を模擬した。なお、繰返し せん断時の載荷速度は全試験 Case ともに 0.5%/min とした。

3. 試験結果

表1に各試験 Case のせん断前の圧密条件を示す。Case A は等方圧密条件であるが、Case B と C は原地盤を想定した 異方圧密条件とした。また、Case B は有効土被り圧の原地盤応力相当であり、Case C は降伏応力を若干超えた応力に設 定した。図2に Case B の1回目の繰返しせん断試験結果を示す。応力~ひずみ関係をみると、せん断に伴い、剛性の低

下・回復が見られる。有効応力経路をみると、1 波目の載 荷で有効応力が大きく減少するが、2 波目以降は減少・回 復を繰返しながら、有効応力は徐々に低下してゆく。

図3に2回目の繰返し載荷試験結果を示す。1回目の繰 返し時よりも、有効応力の減少・回復の経路が近く、過圧 密性が強く表れている。また、せん断応力も図1の1回目 表1 各試験 Case の圧密条件

Case	深度	土被り圧	K_0	$\sigma_{1}^{'}$	σ ₃	σ [`] m
А			1.0	40kPa	40kPa	40kPa
В	7.3m	53kPa	0.5	60kPa	30kPa	40kPa
С			0.5	90kPa	45kPa	60kPa

Deformation of natural intact clay after cyclic loading under simple shear condition. Takeshi Kodaka, Cui Ying, Satoshi Yoshida, Naosuke Miyoshi(Meijo University)

の繰返しせん断試験結果に比べて大きくなっている。これは繰返しせん断後 の圧密により,間隙比が小さくなり過圧密性が高くなっていると考えられる。

図4に Case B と C の繰返しせん断時の軸ひずみを示す。いずれの Case で も1回目の繰返しせん断によって,軸ひずみが大きく発生している。しかし, 2回目の繰返しせん断では,大きな軸ひずみは発生していない。

図5に繰返しせん断後の圧密時の体積ひずみと軸ひずみを示す。1回目の 繰返しせん断後の圧密において,降伏応力を超えた異方圧密のCaseCの方が 原地盤応力相当のCaseBよりも体積ひずみが大きく発生している。2回目の 繰返しせん断後には,逆にCaseCの体積ひずみの方が小さくなる。一方,軸 ひずみは、1回目の繰返し後の圧密時には、各Caseとも体積ひずみの1/3弱 となっており、等方的な変形であることがわかった。2回目のせん断後の圧 密時には、値は小さいながら、体積ひずみの1/2強の軸ひずみが発生してお り、軸圧縮が卓越した変形であったことがわかる。

図6に繰返しせん断履歴を受けた粘土の間隙比の変化を示す。比較のため 別途実施した不撹乱赤井粘土とその再構成粘土(予備圧密 100kPa)の CRS

圧密試験結果²⁾も併せて示す。不撹乱赤井粘土と再構成粘土の圧縮曲線には差があり、その差が構造の程度を表している。繰返しせん断後に圧密を行うことにより、どの Case においても間隙比が低下していることが図中のプロットからわかるが、不攪乱粘土の圧縮曲線付近の間隙比から再構成粘土の圧縮曲線に向けての低下であることが見てとれる。その低下の度合いは、せん断前の圧密応力が大きいほど顕著であるが、完全に再構成粘土の圧縮曲線に届くほどの低下ではなく、2回の繰返しせん断を経てもなお、構造が完全には劣化せずに残存していると考えられる。

4. まとめ

繰返しせん断後の圧密を観察した結果,複数回の繰返しせん断を経ても構造は完全に劣化することなく,圧密沈下が 繰り返される。また、本研究の実験において、繰返しせん断過程において脆性的な破壊の特徴は現れなかった。荷重の 条件次第で、鋭敏な不撹乱粘土といえども、地震時および地震後に構造劣化はそれほど大きくは発生しない可能性もあ る。今後、高盛土などを想定した大きな偏差応力作用下での実験も実施し、自然堆積粘性土地盤の地震後変形について 検討を重ねてゆく予定である。なお、本稿は東日本大震災対応調査研究委員会「地盤変状メカニズム研究委員会(委員 長:浅岡顕)」に関連する研究報告である。

参考文献:1)大島ら:東大阪地域の鋭敏粘土層の分布域と堆積環境から見たその成因の再検討,材料,59(1),pp.2-7,2010.2)吉 田ら:構造と異方性による粘土の力学挙動に及ぼす影響,平成23年度土木学会中部支部研究発表会論文集,2011.